50V, DC - 3.2GHZ, 135W GAN HEMT

FEATURES

Operating Frequency Range: DC to 3.2GHz

Operating Drain Voltage: +50V

Maximum Output Power (Psat): 150W

Maximum Drain Efficiency: 70%
Efficiency: Tupod D2dB Coin; 196

Efficiency-Tuned P3dB Gain: 18dB

Surface Mount Plastic Package

14 Pin 6x3 mm DFN Package

DESCRIPTION

The GT135D is a 150W (P3dB) unmatched discrete GaN-on-SiC HEMT which operates from DC to 3.2GHz on a 50V supply rail. The wide bandwidth of the GT135D makes it suitable for a variety of applications including cellular infrastructure, radar, communications, and test instrumentation, and can support both linear and pulsed mode of operations.

The device is housed in an industry-standard 6x3 mm surface mount DFN package. Lead-free and ROHS compliant.

TYPICAL PERFORMANCE: POWER TUNED at P3dB, T_A = 25°C (1)

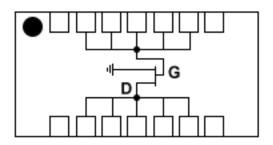
Parameter	1.7 GHz	2.0 GHz	2.3 GHz	2.6 GHz	3.2GHz
Gain (dB)	17.8	16.5	14.9	13.5	TBD
Saturated Output Power (W)	154	151	155	151	TBD
Drain Efficiency (%)	64	61	61	57	TBD

 $^{^{(1)}}$ $V_D = 50V$, $I_{DQ} = 250mA$

TYPICAL PERFORMANCE: EFFICIENCY TUNED at P3dB, T_A = 25°C (2)

Parameter	1.7 GHz	2.0 GHz	2.3 GHz	2.6 GHz	3.2GHz
Gain (dB)	18.7	17.1	15.9	14.7	TBD
Saturated Output Power (W)	108	135	100	100	TBD
Drain Efficiency (%)	71	68	68	66	TBD

 $^{^{(2)}}$ V_D = 50V, I_{DQ} = 250mA

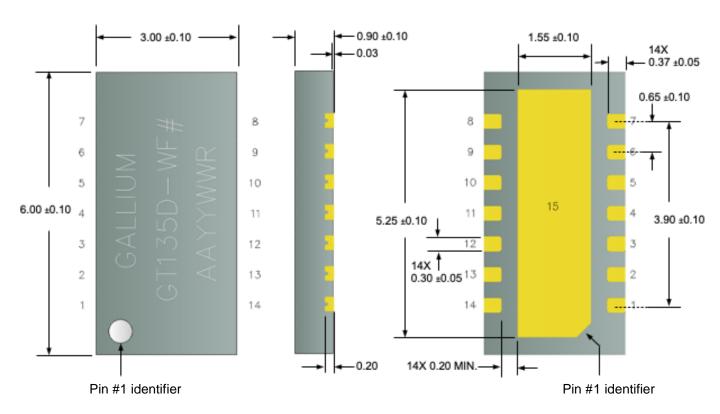


50V, DC - 3.2GHZ, 135W GAN HEMT

ABSOLUTE MAXIMUM RATINGS

Rating	Units
>150	BV _{DG} (V)
-8 to +2	V _{GS} (V)
55	V (V)
+225	(°C)
-65 to +150	(°C)
	>150 -8 to +2 55 +225

BLOCK DIAGRAM



ELECTRICAL SPECIFICATIONS: TA = 25°C

Parameter	Min.	Тур.	Max.	Units	Notes
Frequency Range	DC		3200	MHz	
DC Characteristics					
Drain Source Breakdown Volta	ge	>150		V _{DS} (V)	
Orain Source Leakage Current		1.50		I _{DS} (mA)	
Gate Threshold Voltage		-3.5 to -1.5		V _{GS} (V)	
Operating Conditions					
Sate Voltage		-2.5		V _G (V)	
Prain Voltage		50		V _D (V)	
Quiescent Drain Current		250		I _{DQ} (mA)	
Thermal Characteristics					
Thermal Resistance		TBD		(°C/W)	

50V, DC - 3.2GHZ, 135W GAN HEMT

PACKAGE DIMENSIONS

Note: Dimension in mm. (Equivalent engineering part number - GE0047)

PIN CONFIGURATION

Pin	Input/Output
1	Not connected
2, 3, 4, 5, 6	RF Input / Gate Voltage
7, 8	Not connected
9, 10, 11, 12, 13	RF Output / Drain Voltage
14	Not connected
15 (Paddle)	Ground

DEVICE LABEL

Line 1:	COMPANY NAME: GALLIUM			
Line 2:	PART NUMBER - WAFER #			
Line 3:	AA:	Assembly Code		
	YYWW:	Assembly Date Code		
	R:	Reserved code		

50V, DC - 3.2GHZ, 135W GAN HEMT

Gan HEMT BIASING SEQUENCE

To turn the transistor ON

- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase V_{GS} to set I_{DS} current (250mA)
- 4. Apply RF power

To turn the transistor OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} to -5V
- 3. Turn off V_{D.} Wait a few seconds for drain capacitor to discharge
- 4. Turn off V_{GS}

CONTACT INFORMATION

To request latest information and samples, please contact us at:

Web: https://www.galliumsemi.com/

Email: sales@galliumsemi.com